

US009477190B2

(12) United States Patent Wu et al.

(10) Patent No.: US 9,477,190 B2

(45) **Date of Patent:** Oct. 25, 2016

(54) FUSER MEMBER

(71) Applicant: Xerox Corporation, Norwalk, CT (US)

 $(72) \quad \text{Inventors: } \textbf{Jin Wu}, \text{Pittsford, NY (US); } \textbf{David}$

Joseph Gervasi, Pittsford, NY (US); Matthew Michael Kelly, West Henrietta, NY (US); Lin Ma, Pittsford,

NY (US)

(73) Assignee: Xerox Corporation, Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 269 days.

(21) Appl. No.: 14/251,858

(22) Filed: Apr. 14, 2014

(65) Prior Publication Data

US 2015/0293479 A1 Oct. 15, 2015

(51) Int. Cl. *H01B 1/12* (2006.01) *G03G 15/20* (2006.01)

(52) U.S. Cl.

CPC *G03G 15/2057* (2013.01); *G03G 15/2025* (2013.01); *G03G 2215/2009* (2013.01); *G03G 2215/2032* (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0106510 A1 8/2002 Deguchi et al. 2007/0265379 A1 11/2007 Chen et al. 2012/0052306 A1 3/2012 Wu et al.

FOREIGN PATENT DOCUMENTS

JP 2008116700 * 5/2008

OTHER PUBLICATIONS

JP 2008116700 Machine translation.*

Office Action for U.S. Appl. No. 14/093,597, dated Jun. 10, 2015, 13 pages

Final Office Action for U.S. Appl. No. 14/093,597, dated Apr. 12, 2016, 13 pages.

* cited by examiner

Primary Examiner — Ana Woodward (74) Attorney, Agent, or Firm — Hoffman Warnick LLC

(57) ABSTRACT

The present teachings provide a fuser member. The fuser member includes a substrate layer. The substrate layer substrate layer includes a polyimide having dispersed therein a plurality of poly(p-phenylene benzobisthiazole) fibers. An intermediate layer is disposed on the substrate layer. A release layer is disposed on the intermediate layer.

18 Claims, 4 Drawing Sheets

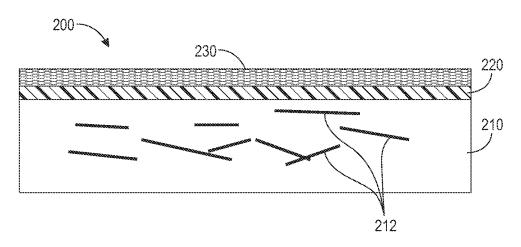


FIG. 1

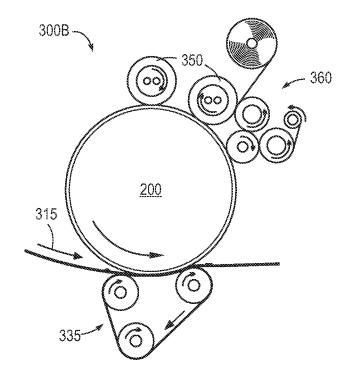
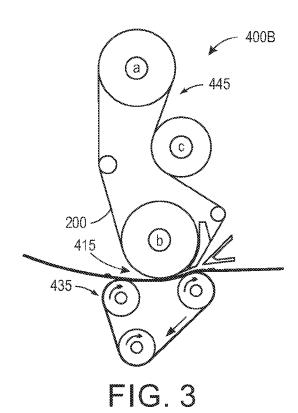



FIG. 2

12 8 8 12 12 13 17 7 10 9 11 FIG. 4

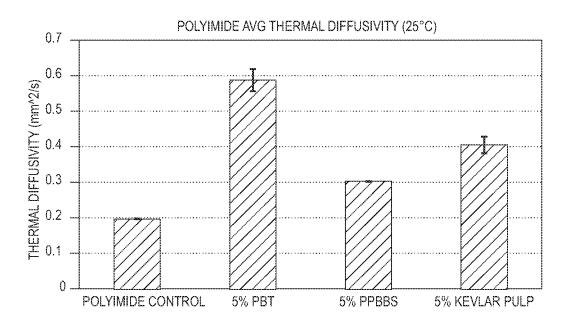


FIG. 5

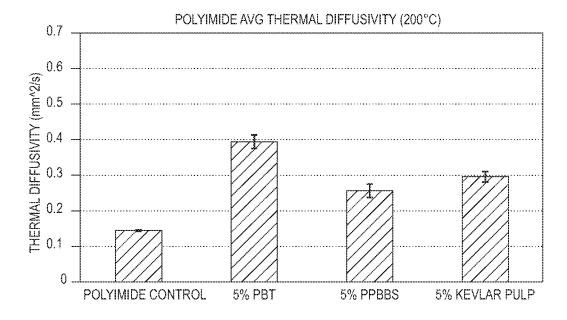
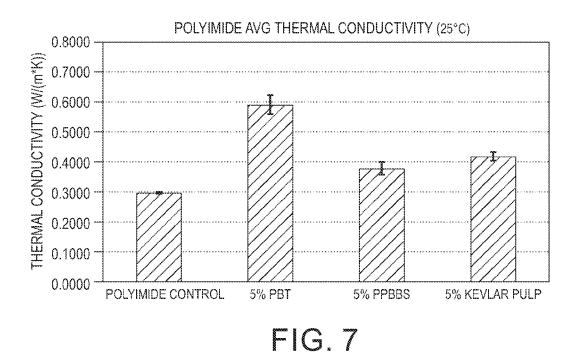



FIG. 6

0.8000 POLYIMIDE AVG THERMAL CONDUCTIVITY (200°C)

0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0000 POLYIMIDE CONTROL 5% PBT 5% PPBBS 5% KEVLAR PULP

FIG. 8

BACKGROUND

1. Field of Use

This disclosure is generally directed to fuser members useful in electrophotographic imaging apparatuses, including digital, image on image, and the like. In addition, the fuser member described herein can also be used in a transfix 10 apparatus in a solid ink jet printing machine.

2. Background

Polymers have many desirable properties for engineering systems including low mass density, chemical stability, and high strength-to-mass ratio. Polymeric materials typically have a low thermal conductivity near room temperature; in fact, foams of amorphous polymers are widely used for thermal insulation. In situations where heat transfer is critical, polymeric materials are at a disadvantage. Materials for heat exchangers and thermal management require high thermal conductivity. Metals (Cu, Al, Ti) and certain ceramics (AlN, diamond, graphite) are used for applications requiring high thermal conductivity.

In the electrophotographic printing process, a toner image 25 can be fixed or fused upon a support (e.g., a paper sheet) using a fuser member. Metal and ceramic fillers have been incorporated into polymeric materials to enhance conductivity of fuser members. However, incorporation of metal and ceramic fillers into polymeric material can decrease the 30 Young's modulus of polymeric material. It would be desirable to have a fuser belt having higher thermal conductivity, high thermal diffusivity and a high Young's modulus.

SUMMARY

According to an embodiment, a fuser member is provided. The fuser member includes a substrate layer. The substrate layer substrate layer includes a polyimide having dispersed therein a plurality of poly(p-phenylene benzobisthiazole) fibers. The poly(p-phenylene benzobisthiazole) is represented by:

wherein n is from 20 to 2,000.

According to another embodiment, there is provided a fuser member including a substrate layer including polyimide having dispersed therein a plurality of poly(p-phenylene benzobisthiazole) fibers. An intermediate layer is disposed on the substrate layer and includes a material selected from the group consisting of silicone and fluoroelastomer. A release layer is disposed on the intermediate layer includes a fluoropolymer.

According to another embodiment there is provided a fuser member including a substrate layer an intermediate layer disposed on the substrate layer and a release layer disposed on the intermediate layer. The substrate layer includes a polyimide having dispersed therein a plurality of 65 poly(p-phenylene benzobisthiazole) fibers. The the poly(p-phenylene benzobisthiazole) is represented by:

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

wherein n is from 20 to about 2,000. The intermediate layer includes a material selected from silicone and fluoroelastomer. The release layer includes a fluoropolymer.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the present teachings and together with the description, serve to explain the principles of the present teachings.

FIG. 1 depicts an exemplary fuser member having a belt substrate in accordance with the present teachings.

FIG. 2 depicts an exemplary fusing configuration using the fuser member shown in FIG. 1 in accordance with the present teachings.

FIG. 3 depicts an exemplary fusing configuration using the fuser member shown in FIG. 1 in accordance with the present teachings.

FIG. 4 depicts a fuser configuration using a transfix apparatus.

FIG. 5 depicts the thermal diffusivity of a fuser belt of polyimide, a fuser belt of poly(p-phenylene benzobisthiazole) fiber/polyimide composite, a fuser belt of poly(p-phenylene benzobisoxazole) fiber/polyimide composite and a fuser belt Kevlar® fiber/polyimide composite at 25° C.

FIG. 6 depicts the thermal diffusivity of a fuser belt of polyimide, a fuser belt of poly(p-phenylene benzobisthiazole) fiber/polyimide composite, a fuser belt of poly(p-phenylene benzobisoxazole) fiber/polyimide composite and a fuser belt Kevlar® fiber/polyimide composite at 200° C.

FIG. 7 depicts the thermal conductivity of a fuser belt of polyimide, a fuser belt of poly(p-phenylene benzobisthiazole) fiber/polyimide composite, a fuser belt of poly(p-phenylene benzobisoxazole) fiber/polyimide composite and a fuser belt Kevlar® fiber/polyimide composite at 25° C.

FIG. 8 depicts the thermal conductivity of a fuser belt of polyimide, a fuser belt of poly(p-phenylene benzobisthiazole) fiber/polyimide composite, a fuser belt of poly(p-phenylene benzobisoxazole) fiber/polyimide composite and a fuser belt Kevlar® fiber/polyimide composite at 200° C.

It should be noted that some details of the FIGS. have been simplified and are drawn to facilitate understanding of the embodiments rather than to maintain strict structural accuracy, detail, and scale.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to embodiments of the present teachings, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to 60 refer to the same or like parts.

In the following description, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustration specific exemplary embodiments in which the present teachings may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present teachings and it is to be understood that other embodiments

may be utilized and that changes may be made without departing from the scope of the present teachings. The following description is, therefore, merely illustrative.

Illustrations with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner 15 similar to the term "comprising." The term "at least one of" is used to mean one or more of the listed items can be selected

Notwithstanding that the numerical ranges and parameters setting forth the broad scope of embodiments are 20 approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges dis- 25 closed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of "less than 10" can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a 30 minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as "less than 10" can assume negative 35 values, e.g. -1, -2, -3, -10, -20, -30, etc.

The fuser or fixing member can include a substrate having one or more functional intermediate layers formed thereon. The substrate described herein includes a belt. The one or more intermediate layers include cushioning layers and 40 release layers. Such fuser member can be used as an oil-less fusing member for high speed, high quality electrophotographic printing to ensure and maintain a good toner release from the fused toner image on an image supporting material (e.g., a paper sheet), and further assist paper stripping.

In various embodiments, the fuser member can include, for example, a substrate, with one or more functional intermediate layers formed thereon. The substrate can be formed in various shapes, such as a belt, or a film, using suitable materials that are non-conductive or conductive 50 depending on a specific configuration, for example, as shown in FIG. 1.

In FIG. 1, an exemplary embodiment of a fusing or transfix member 200 can include a belt substrate 210 with one or more functional intermediate layers, e.g., 220 and an 55 outer surface layer 230 formed thereon. The outer surface layer 230 is also referred to as a release layer. The belt substrate 210 is described further and is made of poly(p-phenylene benzobisthiazole) fibers 212 dispersed in polyimide.

Intermediate Layer or Functional Layer

Examples of materials used for the functional intermediate layer 220 (also referred to as cushioning layer or intermediate layer) include fluorosilicones, silicone rubbers such as room temperature vulcanization (RTV) silicone rubbers, 65 high temperature vulcanization (HTV) silicone rubbers, and low temperature vulcanization (LTV) silicone rubbers.

4

These rubbers are known and readily available commercially, such as SILASTIC® 735 black RTV and SILASTIC® 732 RTV, both from Dow Corning; 106 RTV Silicone Rubber and 90 RTV Silicone Rubber, both from General Electric; and JCR6115CLEAR HTV and SE4705U HTV silicone rubbers from Dow Corning Toray Silicones. Other suitable silicone materials include silthianes (such as polydimethylsilthianes); fluorosilicones such as Silicone Rubber 552, available from Sampson Coatings, Richmond, Va.; liquid silicone rubbers such as vinyl crosslinked heat curable rubbers or silanol room temperature crosslinked materials; and the like. Another specific example is Dow Corning Sylgard 182. Commercially available LSR rubbers include Dow Corning Q3-6395, Q3-6396, SILASTIC 590 LSR, SILASTIC 591 LSR, SILASTIC 595 LSR, SILASTIC® 596 LSR, and SILASTIC® 598 LSR from Dow Corning. The functional layers provide elasticity and can be mixed with inorganic particles, for example SiC or Al₂O₃, as required.

Other examples of the materials suitable for use as functional intermediate layer 220 also include fluoroelastomers. Fluoroelastomers are from the class of 1) copolymers of two of vinylidenefluoride, hexafluoropropylene, and tetrafluoroethylene; such as those known commercially as VITON A®2) terpolymers of vinylidenefluoride, hexafluoropropylene, and tetrafluoroethylene those known commercially as VITON B®; and 3) tetrapolymers of vinylidenefluoride, hexafluoropropylene, tetrafluoroethylene, and cure site monomer those known commercially as VITON GH® or VITON GF®. These fluoroelastomers are known commercially under various designations such as those listed above, along with VITON E®, VITON E 60C®, VITON E430®, VITON 910®, and VITON ETP®. The VITON® designation is a Trademark of E.I. DuPont de Nemours, Inc. The cure site monomer can be 4-bromoperfluorobutene-1, 1,1-dihydro-4-bromoperfluorobutene-1,3-bromoperfluoropropene-1,1,1-dihydro-3-bromoperfluoropropene-1, or any other suitable, known cure site monomer, such as those commercially available from DuPont. Other commercially available fluoropolymers include FLUOREL 2170®, FLUOREL 2174®, FLUOREL 2176®, FLUOREL 2177® and FLUOREL LVS 76®, FLUOREL® being a registered trademark of 3M Company. Additional commercially available materials include AFLASTM a poly(propylene-tetrafluoroethylene), and FLUOREL II® (LII900) a poly(propylenetetrafluoroethylenevinylidenefluoride), both also available from 3M Company, as well as the Tecnoflons identified as FOR-60KIR®, FOR-LHF®, NM® FOR-THF®, FOR-TFS® TH® NH® P757® TNS®, T439®, PL958® BR9151 ® and TN505®, available from Ausimont.

The fluoroelastomers VITON GH® and VITON GF® have relatively low amounts of vinylidenefluoride. The VITON GF® and VITON GH® have about 35 weight percent of vinylidenefluoride, about 34 weight percent of hexafluoropropylene, and about 29 weight percent of tetrafluoroethylene, with about 2 weight percent cure site monomer.

The thickness of the functional intermediate layer 220 is from about 30 microns to about 1,000 microns, or from about 100 microns to about 800 microns, or from about 150 microns to about 500 microns.

Release Layer

An embodiment of a release layer 230 includes fluoropolymer particles. Fluoropolymer particles suitable for use in the formulation described herein include fluorine-containing polymers. These polymers include fluoropolymers comprising a monomeric repeat unit that is selected from the group consisting of vinylidene fluoride, hexafluoropropylene, tet-

rafluoroethylene, perfluoroalkylvinylether, and mixtures thereof. The fluoropolymers may include linear or branched polymers, and cross-linked fluoroelastomers. Examples of fluoropolymer include polytetrafluoroethylene (PTFE); perfluoroalkoxy polymer resin (PFA); copolymer of tetrafluo- 5 roethylene (TFE) and hexafluoropropylene (HFP); copolymers of hexafluoropropylene (HFP) and vinylidene fluoride (VDF or VF2); terpolymers of tetrafluoroethylene (TFE), vinylidene fluoride (VDF), and hexafluoropropylene (HFP); and tetrapolymers of tetrafluoroethylene (TFE), vinylidene 10 fluoride (VF2), and hexafluoropropylene (HFP), and mixtures thereof. The fluoropolymer particles provide chemical and thermal stability and have a low surface energy. The fluoropolymer particles have a melting temperature of from about 255° C. to about 360° C. or from about 280° C. to 15 about 330° C. These particles are melted to form the release

For the fuser member 200, the thickness of the outer surface layer or release layer 230 can be from about 10 microns to about 100 microns, or from about 20 microns to 20 about 80 microns, or from about 40 microns to about 60 microns.

Adhesive Layer(s)

Optionally, any known and available suitable adhesive layer, also referred to as a primer layer, may be positioned 25 between the release layer 230, the functional intermediate layer 220 and the substrate 210. Examples of suitable adhesives include silanes such as amino silanes (such as, for example, HV Primer 10 from Dow Corning), titanates, zirconates, aluminates, and the like, and mixtures thereof. In 30 an embodiment, an adhesive in from about 0.001 percent to about 10 percent solution can be wiped on the substrate. The adhesive layer can be coated on the substrate, or on the outer layer, to a thickness of from about 2 nanometers to about 2,000 nanometers, or from about 2 nanometers to about 500 35 nanometers. The adhesive can be coated by any suitable known technique, including spray coating or wiping.

FIGS. 2 and 3 depict an embodiment of a fusing configuration for the fusing process in accordance with the present teachings. It should be readily apparent to one of ordinary 40 skill in the art that the fusing configurations 300B and 400B depicted in FIGS. 2 and 3, respectively, represent generalized schematic illustrations and that other members/layers/substrates/configurations can be added or existing members/layers/substrates/configurations can be removed or 45 modified. Although an electrophotographic printer is described herein, the disclosed apparatus and method can be applied to other printing technologies. Examples include offset printing and inkjet and solid transfix machines.

FIG. 2 depicts the fusing configuration 300B using a fuser 50 belt shown in FIG. 1 in accordance with the present teachings. The configuration 300B can include a fuser belt of FIG. 1 that forms a fuser nip with a pressure applying mechanism 335, such as a pressure belt, for an image supporting material 315. In various embodiments, the pressure applying 55 mechanism 335 can be used in combination with a heat lamp (not shown) to provide both the pressure and heat for the fusing process of the toner particles on the image supporting material 315. In addition, the configuration 300B can include one or more external heat rolls 350 along with, e.g., 60 a cleaning web 360, as shown in FIG. 2.

FIG. 3 depicts the fusing configuration 400B using a fuser belt shown in FIG. 1 in accordance with the present teachings. The configuration 400B can include a fuser belt (i.e., 200 of FIG. 1) that forms a fuser nip with a pressure 65 applying mechanism 435, such as a pressure belt in FIG. 3, for a media substrate 415. In various embodiments, the

6

pressure applying mechanism 435 can be used in a combination with a heat lamp to provide both the pressure and heat for the fusing process of the toner particles on the media substrate 415. In addition, the configuration 400B can include a mechanical system 445 to move the fuser belt 200 and thus fusing the toner particles and forming images on the media substrate 415. The mechanical system 445 can include one or more rolls 445*a-c*, which can also be used as heat rolls when needed.

FIG. 4 demonstrates a view of an embodiment of a transfix member 7 which may be in the form of a belt, sheet, film, or like form. The transfix member 7 is constructed similarly to the fuser belt described above. The developed image 12 positioned on intermediate transfer member 1, is brought into contact with and transferred to transfix member 7 via rollers 4 and 8. Roller 4 and/or roller 8 may or may not have heat associated therewith. Transfix member 7 proceeds in the direction of arrow 13. The developed image is transferred and fused to a copy substrate 9 as copy substrate 9 is advanced between rollers 10 and 11. Rollers 10 and/or 11 may or may not have heat associated therewith. Substrate Layer

The substrate layer 210 disclosed herein is a composition of polyimide having poly(p-phenylene benzobisthiazole) fibers 212 dispersed throughout the polyimide. The incorporation of poly(p-phenylene benzobisthiazole) fibers 212 into the polyimide provides a higher thermal diffusivity, a higher thermal conductivity and a higher Young's modulus than a fuser belt without the fiber. The poly(p-phenylene benzobisthiazole) fibers 212 are not to scale and shown for illustration.

The structure of poly(p-phenylene benzobisthiazole) is shown below.

$$- \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N} \underbrace{ \left\{ \begin{array}{c} N \\ S \end{array} \right\} }_{N$$

wherein n is from about 20 to about 2,000, or in embodiments n is from about 30 to about 1,800 or from about 50 to about 1,500. The poly(p-phenylene benzobisthiazole) fibers **212** are obtained from Dupont.

The poly(p-phenylene benzobisthiazole) fibers 212 have a length of from about 0.1 mm to about 10 mm, or in embodiments from about 0.3 mm to about 8 mm or from about 0.5 mm to about 5 mm. The poly(p-phenylene benzobisthiazole) fibers 212 have a diameter of from about 1 micron to about 1,000 microns, or in embodiments from about 5 microns to about 8,000 microns or from about 10 micron to about 5.00 microns. The amount of fibers incorporated into the substrate layer is from about 0.1 weight percent to about 20 weight percent, or in embodiments from about 0.5 weight percent to about 15 weight percent or from about 1 weight percent to about 10 weight percent.

The polyimide is derived from corresponding polyamic acid such as one of a polyamic acid of pyromellitic dianhydride/4,4'-oxydianiline, a polyamic acid of pyromellitic dianhydride/phenylenediamine, a polyamic acid of biphenyl tetracarboxylic dianhydride/4,4'-oxydianiline, a polyamic acid of biphenyl tetracarboxylic dianhydride/phenylenediamine, a polyamic acid of benzophenone tetracarboxylic dianhydride/4,4'-oxydianiline, a polyamic acid of benzophenone tetracarboxylic dianhydride/4,4'-oxydianiline, a polyamic acid of benzophenone tetracarboxylic dianhydride/4,4'-oxydianiline/phenylenediamine, and the like and mixtures thereof.

Commercial examples of polyamic acid of pyromellitic dianhydride/4,4-oxydianiline include PYRE-ML RC5019 (about 15-16 weight percent in N-methyl-2-pyrrolidone, (NMP)), RC5057 (about 14.5-15.5 weight percent in NMP/aromatic hydrocarbon=80/20), and RC5083 (about 18-19 5 weight percent in NMP/DMAc=15/85), all from Industrial Summit technology Corp., Parlin, N.J.; and DURIMIDE® 100, commercially available from FUJIFILM Electronic Materials U.S.A., Inc.

Commercial examples of polyamic acid of biphenyl tetracarboxylic dianhydride/4,4'-oxydianiline include U-VAR-NISH A, and S (about 20 weight in NMP), both from UBE America Inc., New York, N.Y.

Commercial examples of polyamic acid of biphenyl tetracarboxylic dianhydride/phenylenediamine include 15 P1-2610 (about 10.5 weight in NMP), and P1-2611 (about 13.5 weight in NMP), both from HD MicroSystems, Parlin, N.J.

Commercial examples of polyamic acid of benzophenone tetracarboxylic dianhydride/4,4'-oxydianiline include RP46, 20 and RP50 (about 18 weight percent in NMP), both from Unitech Corp., Hampton, Va.

Commercial examples of polyamic acid of benzophenone tetracarboxylic dianhydride/4,4'-oxydianiline/phenylenediamine include P1-2525 (about 25 weight percent in NMP), 25 P1-2574 (about 25 weight percent in NMP), P1-2555 (about 19 weight percent in NMP/aromatic hydrocarbon=80/20), and P1-2556 (about 15 weight percent in NMP/aromatic hydrocarbon/propylene glycol methyl ether=70/15/15), all from HD MicroSystems, Parlin, N.J.

Various amounts of polyamic acid can be selected for the substrate, such as for example, from about 80 weight percent to about 99.9 weight percent, from about 85 weight percent to about 99.5 weight percent, or from about 90 weight percent to about 99.0 weight percent.

Other polyamic acid or ester of polyamic acid examples that can be included in the polyimide substrate layer are from the reaction of a dianhydride and a diamine. Suitable dianhydrides include aromatic dianhydrides and aromatic tetracarboxylic acid dianhydrides such as, for example, 40 9,9-bis(trifluoromethyl)xanthene-2,3,6,7-tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,2-bis((3,4-dicarboxyphenoxy)phenyl)hexafluoropropane dianhydride, 4,4'-bis(3,4-dicarboxy-2,5,6-trifluorophenoxy)octafluorobiphenyl dianhydride, 45 3,3',4,4'-tetracarboxybiphenyl dianhydride, 3,3',4,4'-tetracarboxybenzophenone dianhydride, di-(4-(3,4-dicarboxyphenoxyl)phenyl)ether dianhydride, di-(4-(3,4-dicarboxyphenoxyl)phenyl) sulfide dianhydride, di-(3,4dicarboxyphenyl)methane dianhydride, di-(3,4- 50 1,2,4,5dicarboxyphenyl)ether dianhydride, tetracarboxybenzene dianhydride, 1,2,4-tricarboxybenzene dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 2,3,6,7-naph-55 thalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 60 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4-4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetrac-2,2-bis(3,4-dicarboxyphenyl) arboxylic dianhydride, propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane 65 dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis (2,3-dicarboxyphenyl)ether dianhydride, bis(3,4-dicarboxy8

phenyl)sulfone dianhydride, bis(2,3-dicarboxyphenyl)sul-2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3hexafluoropropane dianhydride, 2,2-bis(3,4dicarboxyphenyl)-1,1,1,3,3,3-hexachloropropane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis (2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy) diphthalic dianhydride, 4,4'-(m-phenylenedioxy)diphthalic dianhydride, 4,4'-diphenylsulfidedioxybis(4-phthalic acid) dianhydride, 4,4'-diphenylsulfonedioxybis(4-phthalic acid) dianhydride, methylenebis(4-phenyleneoxy-4-phthalic acid) dianhydride, ethylidenebis(4-phenyleneoxy-4-phthalic acid) dianhydride, isopropylidenebis-(4-phenyleneoxy-4-phthalic acid)dianhydride, hexafluoroisopropylidenebis(4-phenyleneoxy-4-phthalic acid)dianhydride, and the like. Exemplary diamines suitable for use in the preparation of the polyamic acid include 4,4'-bis-(m-aminophenoxy)-biphenyl, 4,4'-bis-(m-aminophenoxy)-diphenyl sulfide, 4,4'-bis-(m-aminophenoxy)-diphenyl sulfone, 4.4'-bis-(p-aminophenoxy)-benzophenone, 4,4'-bis-(p-aminophenoxy)-diphenyl sulfide, 4,4'bis-(p-aminophenoxy)-diphenyl sulfone, 4.4'-diamino-4,4'-diaminobiphenyl, 4 4'azobenzene. diaminodiphenylsulfone, 4,4'-diamino-p-terphenyl, 1,3-bis-(gamma-aminopropyl)-tetramethyl-disilthiane, 1,6diaminohexane, 4,4'-diaminodiphenylmethane, 3,3'-4,4'diaminodiphenylmethane, 1,3-diaminobenzene, diaminodiphenyl ether, 2,4'-diaminodiphenylether, 3,3'diaminodiphenylether, 3,4'-diaminodiphenylether, diaminobenzene, 4,4'-diamino-2,2',3,3',5,5',6,6'-octafluorobiphenyl, 4,4'-diamino-2,2',3,3',5,5',6,6'-octafluorodiphenyl ether, bis[4-(3-aminophenoxy)-phenyl]sulfide, bis[4-(3aminophenoxyl)phenyl]sulfone, bis[4-(3-aminophenoxyl) phenyl|ketone, 4,4'-bis(3-aminophenoxy)biphenyl, 2,2-bis

4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, 1,1-di(p-aminophenyl)ethane, 2,2-di(p-aminophenyl) propane, and 2,2-di(p-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, and the like and mixtures thereof.

aminophenoxyl)phenyl]-1,1,1,3,3,3-hexafluoropropane,

2,2-bis[4-(3-

[4-(3-aminophenoxyl)phenyl]-propane,

The dianhydrides and diamines are, for example, selected in a weight ratio of dianhydride to diamine of from about 20:80 to about 80:20, and more specifically, in an about 50:50 weight ratio. The above aromatic dianhydride like aromatic tetracarboxylic acid dianhydrides and diamines like aromatic diamines are used singly or as a mixture, respectively.

The poly(p-phenylene benzobisthiazole) fiber/polyimide substrate can optionally contain a polysilthiane copolymer to enhance or smooth the coating. The concentration of the polysilthiane copolymer is from about 0.01 weight percent to about 1.0 weight percent based on the total weight of the substrate. The optional polysiloxane copolymer includes a polyester modified polydimethylsiloxane, commercially available from BYK Chemical with the trade name of BYK® 310 (about 25 weight percent in xylene) and 370 (about 25 weight percent in xylene/alkylbenzenes/cyclohexanone/monophenylglycol=75/11/7/7); a polyether modified polydimethylsiloxane, commercially available from BYK Chemical with the trade name of BYK® 330 (about 51 weight percent in methoxypropylacetate) and 344 (about 52.3 weight percent in xylene/isobutanol=80/20), BYK®-SILCLEAN 3710 and 3720 (about 25 weight percent in methoxypropanol); a polyacrylate modified polydimethylsiloxaane, commercially available from BYK Chemical with the trade name of BYK®-SILCLEAN 3700 (about 25

weight percent in methoxypropylacetate); or a polyester polyether modified polydimethylsiloxaane, commercially available from BYK Chemical with the trade name of BYK® 375 (about 25 weight percent in Di-propylene glycol monomethyl ether).

Additives and additional conductive or non-conductive fillers may be present in the above-described substrate layer, intermediate layer or release layer. In various embodiments, other filler materials or additives including, for example, inorganic particles, can be used. Fillers used herein include 10 carbon blacks, aluminum nitride, boron nitride, aluminum oxide, graphite, graphene, copper flake, nano diamond, carbon nanotube, metal oxide, doped metal oxide, metal flake, and mixtures thereof. In various embodiments, other additives known to one of ordinary skill in the art can also 15 be included to form the disclosed composite materials.

The poly(p-phenylene benzobisthiazole) fiber/polyimide composition is flow coated onto a substrate and cured. The curing of the fiber/polyimide composition is at a temperature of from about 200° C. to about 370° C., or from about 300° ²⁰ C. to about 340° C., for a time of from about 30 minutes to about 150 minutes, or from about 60 minutes to about 120 minutes. The curing can be done in stages with the composition under tension in the final stage.

EXAMPLES

Experimentally, a polyamic acid of biphenyl tetracarboxylic dianhydride/p-benzenedianiline (BPDA resin from Kaneka, about 16.6 weight percent in NMP) was mixed with 30 poly(p-phenylene benzobisthiazole) (PBT) fibers and additional NMP solvent with a high shear mixer at the weight ratio of 95/5. After coating and subsequent curing, a PBT/polyimide composite belt was obtained for fuser belt application.

FIGS. **5** (at 25° C.) and **6** (at 200° C.). show the thermal diffusivity of a polyimide control belt, a poly(p-phenylene benzobisthiazole) (PBT) fiber/polyimide composite belt, a poly(p-phenylene benzobisoxazole) (PPBBS) fiber/polyimide composite belt and a Kevlar® fiber/polyimide composite 40 belt.

FIGS. 7 (at 25° C.) and 8 (at 200° C.) show the thermal conductivity a polyimide control belt, a poly(p-phenylene benzobisthiazole) (PBT) fiber/polyimide composite belt, a poly(p-phenylene benzobisoxazole) (PPBBS) fiber/polyimide composite belt and a Kevlar® fiber/polyimide composite belt

The resulting PBT/polyimide composite belt was shown to possess significantly higher thermal diffusivity (FIGS. 5 and 6) and thermal conductivity (FIGS. 7 and 8) than the 50 controlled polyimide belt. Further, and the highest thermal diffusivity (FIGS. 5 and 6) and thermal conductivity (FIGS. 7 and 8) among two other types of fibers was shown in the belt containing a poly(p-phenylene benzobisthiazole) fibers. The other two fibers tested included the poly(p-phenylene 55 benzobisoxazole) (PPBBS) fiber disclosed in U.S. Ser. No. 14/093,597, and the KEVLAR® pulp aramid fiber disclosed in U.S. Ser. No. 14/155,881 by using the LFA 447 Nanoflash instrument.

Thermal diffusivities and conductivities at 25° C. and 60 200° C. (approximate temperature for fusing) were increased significantly when PBT fibers were incorporated into the polyimide, and were also higher than the poly(p-phenylene benzobisoxazole) (PPBBS)/polyimide belt and the KEVLAR® pulp aramid/polyimide belt.

In addition, Young's modulus of the controlled polyimide, the disclosed PBT/polyimide, the KEVLAR® fiber/polyim-

10

ide, and the poly(p-phenylene benzobisoxazole) (PBBBS)/polyimide belt was measured, and the disclosed PBT/polyimide belt showed higher modulus than the controlled polyimide belt, and comparable modulus to the poly(p-phenylene benzobisoxazole)/polyimide belt, and the aramid/polyimide belt (Table 1):

TABLE 1

	Young's modulus (MPa)
The disclosed PBT/polyimide belt	7,800
The aramid/polyimide belt	7,600
The PPBBS/polyimide belt	7,500
The controlled polyimide belt	5,800

In summary, poly(p-phenylene benzobisthiazole) fibers incorporated into a polyimide matrix produces a fuser belt having for higher thermal diffusivity, higher thermal conductivity and a higher Young's modulus.

It will be appreciated that variants of the above-disclosed and other features and functions or alternatives thereof may be combined into other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art, which are also encompassed by the following claims.

What is claimed is:

- 1. A fuser member comprising:
- a substrate layer including a polyimide having dispersed throughout poly(p-phenylene benzobisthiazole) fibers, the fibers having a length of from about 0.1 mm to about 10 mm, wherein the poly(p-phenylene benzobisthiazole) is represented by:

$$- \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{$$

wherein n is from 20 to 2,000.

- 2. The fuser member of claim 1, further comprising: an intermediate layer disposed on the substrate layer; and a release layer disposed on the intermediate layer.
- 3. The fuser member of claim 2, wherein the intermediate layer comprises silicone.
- 4. The fuser member of claim 2, wherein the release layer comprises a fluoropolymer.
- **5**. The fuser member of claim **1**, wherein the poly(p-phenylene benzobisthiazole) fibers have a diameter of from about 1 micron to about 1,000 microns.
- 6. The fuser member of claim 1, wherein the poly(p-phenylene benzobisthiazole) fibers comprise from about 0.1 weight percent to about 20 weight percent of the substrate layer.
- 7. The fuser member of claim 1, wherein the substrate layer further comprises a polysiloxaane polymer.
- 8. The fuser member of claim 7, wherein the polysiloxane polymer is selected from the group consisting of: a polyester modified polydimethylsiloxane, a polyether modified polydimethylsiloxane, a polyacrylate modified polydimethylsiloxane, and a polyester polyether modified polydimethylsiloxane.
- **9**. The fuser member of claim **7**, wherein the polysiloxane polymer comprises from about 0.01 weight percent to about 1.0 weight percent of the substrate layer.

25

11

- 10. The fuser member of claim 1, wherein the substrate layer further comprises at least one filler.
- 11. The fuser member of claim 10, wherein the at least one filler is selected from the group consisting of: aluminum nitride, boron nitride, aluminum oxide, graphite, graphene, copper flake, nano diamond, carbon black, carbon nanotube, metal oxides, doped metal oxide, metal flake and mixtures thereof.
 - 12. A fuser member comprising:
 - a substrate layer including a polyimide having dispersed throughout poly(p-phenylene benzobisthiazole) fibers, the fibers having a length of from about 0.1 mm to about 10 mm;
 - an intermediate layer disposed on the substrate layer, the intermediate layer including a material selected from the group consisting of silicone and fluoroelastomer; and
 - a release layer disposed on the intermediate layer, the release layer including a fluoropolymer.
- 13. The fuser member of claim 12, wherein the poly(p-phenylene benzobisthiazole) is represented by:

$$- \left\{ \begin{array}{c} N \\ S \end{array} \right\} \left[\begin{array}{c} S \\ N \end{array} \right]_{\mathcal{I}}$$

wherein n is from 20 to about 2,000.

14. The fuser member of claim **12**, wherein the poly(p-phenylene benzobisthiazole) fibers have a diameter of from about 1 to about 1,000 microns.

12

- 15. The fuser member of claim 12, wherein the release layer further comprises at least one filler.
- 16. The fuser member of claim 15, wherein the at least one filler is selected from the group consisting of: aluminum nitride, boron nitride, aluminum oxide, graphite, graphene, copper flake, nano diamond, carbon black, carbon nanotube, metal oxides, doped metal oxide, metal flake, and mixtures thereof; and wherein the fluoropolymer comprises a fluoroelastomer or a fluoroplastic.

17. A fuser member comprising:

a substrate layer having a polyimide having dispersed throughout poly(p-phenylene benzobisthiazole) fibers, wherein the poly(p-phenylene benzobisthiazole) is represented by:

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

wherein n is from 20 to about 2,000;

- an intermediate layer disposed on the substrate layer, the intermediate layer including a material selected from the group consisting of silicone and fluoroelastomer; and
- a release layer disposed on the intermediate layer, the release layer including a fluoropolymer.
- 18. The fuser member of claim 17, wherein the poly(p-30 phenylene benzobisthiazole) fibers comprise from about 0.1 weight percent to about 20 weight percent of the substrate layer.

* * * * *